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Maas (1992) demonstrated the utility of combining 

remotely sensed surrogates for crop canopy development 

and crop growth models in the release of GRAMI, a mathe-

matical model that uses weather and plant canopy observations 

to simulate growth and yield of graminoid crops. Maas (1992) 

noted the basic complementary advantage of this union is that 

the strengths of one technology can compensate for the weak-

nesses of the other. However, incorporation of remotely sensed 

information into models is not trivial.

Ko et al. (2005) described the within-season calibration 

method of GRAMI that allows the model simulation to 

fi t measured values using an iterative numerical procedure. 

Based on a comparison between measured and simulated 

values, model parameters and initial conditions that aff ect 

crop growth can be changed. Th e subsequent model itera-

tion produces a new set of simulated values that minimizes 

the error between simulated leaf area and values of leaf area 

obtained from remote sensing. An advantage of this procedure 

is the capability to use infrequent observations to calibrate 

the model, which can be obtained through nondestructive 

techniques such as remote sensing.

Maas (1988a) described four methods of incorporating 

remotely sensed information into crop growth models includ-

ing input, updating, reinitialization, and reparameterization. 

Input is the simplest technique and involves using remotely 

sensed observations to evaluate model driving variables. Updat-

ing involves replacing simulated values of model state variables 

with values determined from remotely sensed data, thereby 

providing a new starting point within the growing season each 

time a simulated value is replaced. Reinitialization and repa-

rameterization involve using an iterative numerical technique 

to manipulate model initial conditions or parameters so that 

the resulting simulation fi ts remotely sensed observations.

In reinitialization and reparameterization, the remotely 

sensed data are not used directly in computing crop growth, 

but are used to guide the manipulation of selected model initial 

conditions or parameters that aff ect modeled growth. Th e 

resulting growth simulation passes through the observed values 

in the manner of a best fi t, such that the eff ects of random 

errors in the observations cancel (Maas, 1988a). An advantage 

of this approach is that even a single observation can signifi -

cantly improve model performance (Maas, 1988b) enabling the 

model to simulate much of the detail observed by frequent fi eld 

observations of crop growth.
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YieldTracker, a mathematical crop growth model of the form 

described by Maas (1993), uses remotely sensed data for within-

season calibration of crop growth simulations. YieldTracker 

evolved from GRAMI to serve as the core model of a project 

designed to provide farmers within-season predictions of crop 

yield in individual fi elds over the Internet (Maas et al., 2003). 

Th ese predictions are intended to support real-time manage-

ment decisions such as irrigation water applications. Yield-

Tracker depends on regional weather observations and satellite 

remote sensing to develop probabilistic predictions of crop 

yield during the growing season. Versions of the YieldTracker 

model applicable to the three major warm-season crops in the 

region of interest are being used including maize (Zea mays L.), 

cotton (Gossypium hirsutum L.), and sorghum [Sorghum bicolor 

(L.) Moench].

Estimates of plant canopy leaf area index (LAI) used for 

model calibration are commonly derived from vegetation 

indices such as the normalized diff erence vegetation index 

(NDVI) extracted from Landsat TM imagery acquired during 

the growing season. A defi ciency in this approach is the limited 

sensitivity of NDVI to dense canopies (e.g., LAI > 3) as demon-

strated by Myneni et al. (1997) for six structural types of land 

cover including grasses and cereal crops.

Knowledge of in-season land productivity can guide manage-

ment needed to optimize water utilization. Satellite images 

can quantify crop canopy formation and yield potential of 

individual fi elds in large, multi-county regions. Dynamic 

quantifi cation of land productivity can support analysis of risks 

associated with water use as well as demonstrating the value 

of information analysis. Much of western Kansas overlies the 

Ogallala Aquifer, which is being mined by pumping. Extend-

ing the life of this resource by prudent use seems paramount 

to sustaining the local and state economies. Th erefore, our 

research objectives were to evaluate the accuracy of maize yield 

forecasts from the YieldTracker model for western Kansas con-

ditions over a range of soil water conditions and to investigate 

alternative vegetative indices to NDVI that respond to plant 

water status and high values of LAI.

MATERIALS AND METHODS
YieldTracker Code

An early version of YieldTracker coded in DOS FORTRAN

—and parameterized for maize growing in the High Plains of 

Texas—was ported to Visual Basic for Applications (VBA) to 

run under Microsoft  Access (Microsoft  Corporation, Red-

mond, WA). Th e crop growth and partitioning algorithms and 

the numerical solution were as described for GRAMI by Maas 

(1992). A graphical user interface was added to provide fl exibil-

ity for managing input datasets, manipulating run conditions, 

and exploring parameter sensitivity. A graphics module coded 

in MatLab (Th e Mathworks, Natick, MA) was also developed 

to visually display selected model input and output datasets.

Model Validation Dataset

Maize production data from a subsurface drip irrigation 

study at the Kansas State University Northwest Research-

Extension Center in Colby were obtained for the years 

2002–2004. End-of-season grain yield and in-season devel-

opment of LAI data were available from four replications 

of three treatments—(i) no in-season irrigation (rainfed), 

(ii) limited irrigation (3.8 mm d–1), and (iii) full irrigation 

(7.6 mm d–1)—to serve as validation datasets. Subsurface drip 

irrigation was scheduled daily according to the determined 

need from a weather-based water budget, but was intentionally 

limited to the maximum irrigation system capacities of 3.8 

mm d–1 (limited irrigation treatment) and 7.6 mm d–1 (full 

irrigation treatment) to simulate an irrigation application rate 

constrained by hydrologic groundwater characteristics. Th e 

limited irrigation treatment received a total of 331, 320, and 

271 mm of irrigation water in 2002, 2003, and 2004, respec-

tively. Corresponding values for the full irrigation treatment 

were 518, 465, and 373 mm. Target plant population was 

88,920 plants ha–1.

To eliminate one source of variability for this validation 

exercise, fi eld measurements of the seasonal progression of LAI 

were used to adjust simulated canopy development rather than 

estimating LAI from remotely sensed NDVI as might normally 

be the case. Leaf area of the maize canopy was determined 

by light transmission using a LI-COR 2000 Plant Canopy 

Analyzer (LI-COR Biosciences, Lincoln, NE). Downwelling 

diff use radiation above the canopy was quantifi ed for each of 

fi ve hemispherical ranges of angles, providing reference radia-

tion. Diff use radiation transmitted through the canopy, in the 

same ranges of angles, was detected using three sets of four 

stratifi ed samples beneath the crop canopy. Canopy character-

istics, including LAI, were derived from an application of the 

Beer-Lambert Law (Welles and Norman, 1991), following the 

manufacturer’s instructions.

Local weather data (average daily temperature, global short-

wave irradiance) were used as model driving variables. Annual 

precipitation was 362, 369, and 513 mm for 2002, 2003, and 

2004, respectively, compared with the 30-yr mean of 512 mm. 

Th e years 2002 and 2003 were considered to represent severe 

drought (both hot and dry), while 2004 was near normal con-

ditions. Precipitation during the cropping season was 269, 232, 

and 311 mm for 2002 to 2004, respectively, as compared with 

the normal of 305 mm. Calculated evapotranspiration, for the 

120-d period 15 May through 11 September, was much above 

the long-term normal (584 mm) in 2002 and 2003 (703 and 

659 mm, respectively) and near normal in 2004 (573 mm). Hot 

and dry conditions during 2003 were associated with increased 

spider mite (Oligonychus pratensis Banks and Tetranychus 
urticae Koch) pressure, which was not fully controlled by two 

insecticide treatments applied on 20 July and 4 Aug. 2003.

Simulation Runs and Statistical Analysis: 2006

Individual model simulation runs were conducted for each 

of the 36 yr-treatment-replication combinations. Th e simulated 

yields were compared to observed values using standard statisti-

cal analysis of variance and the LSD multiple range test for 

mean separation (Statistix 9, Analytical Soft ware, Tallahassee, 

FL) to evaluate model performance. Th e sources of variation 

for the general linear model were block, year, treatment, block 

× treatment, and year × treatment.

Field Procedures: 2007

Because remote sensing of canopy development was ulti-

mately a goal, we measured hyperspectral refl ectance signatures 
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above maize canopies during the 2007 growing season. Th ese 

data were used to search for vegetation indices that were more 

sensitive to changes in LAI and plant water status than NDVI. 

Field observations of maize canopy development spanned a 

range of soil water conditions and stages of development from 

mid-vegetative growth through canopy senescence. Annual 

precipitation recorded in 2007 was 466 mm. Replicated (3×) 

plots of three fi eld studies —including rainfed, limited irriga-

tion, and full irrigation treatments—provided the expected 

range of water status and maize canopy conditions typical of 

the central U.S. High Plains. A rainfed cropping sequence 

study represented severe water defi cit conditions. Four experi-

mental treatments included maize grown in a wheat (Triticum 
aestivum L.)-maize-fallow crop sequence or in continuous crop-

ping sequences of wheat-maize-oilseed. Oil seeds treatments 

included spring canola (Brassica napus L.), soybean [Glycine 
max (L.) Merr.], or sunfl ower (Helianthus annuus L.). Two 

treatments of a subsurface drip irrigation study represented 

early season stress, where water defi cits formed in an initially 

full soil water profi le with full seasonal irrigation commencing 

either 1 wk before silking or at silking. Six treatment combina-

tions of a tillage and sprinkler irrigation capacity study repre-

sented mid- and late-season stress as well as water suffi  ciency. 

Irrigation was scheduled with a weather-based water budget, 

but was limited to the two sprinkler irrigation system capaci-

ties of 25 mm every 4 or 8 d (equivalent to 6.4 or 3.2 mm d–1). 

Th is translates into typical seasonal irrigation quantities of 

375 to 500 mm and 200 to 300 mm, respectively. Th ree tillage 

treatments (no-till, strip-till or conventional till) were included 

in the study. Field studies were managed to minimize pest and 

nutrient constraints to crop productivity.

Canopy hyperspectral refl ectance and LAI were measured 

for each experimental treatment throughout the growing sea-

son. Canopy observations commenced in mid-June, 5 wk aft er 

planting, and continued at biweekly intervals through mid-

September. Hyperspectral solar refl ectance was measured using 

a GER 1500 Spectroradiometer (Spectra Vista Corporation, 

New York, NY). Downwelling solar radiation, refl ected by a 

Spectralon thermoplastic resin, provided a measure of reference 

radiation (300–1085 nm wavelengths, 512 bands). Upwell-

ing shortwave radiation was transmitted to the radiometer by 

a fi ber-optic cable, oriented vertically with respect to canopy 

at an elevation of 3 m above the soil surface. Upwelling and 

downwelling radiation spectra were linearly interpolated to 

gain 1 nm resolution. Refl ectance was calculated as the ratio of 

upwelling to downwelling radiation at 1 nm intervals. Canopy 

refl ectance and LAI transmittance observations were typically 

completed on the same date for a given set of plots.

Vegetation Index Calculations
Hyperspectral refl ectance (R) scans from 2007 were used to 

calculate four vegetation indices. Normalized diff erence veg-

etation index (NDVI) was calculated using Landsat TM and 

ETM+ red and near infrared (NIR) band equivalents [NDVI 

= (R750–900 − R630–690)/(R750–900 + R630–690)]. A total chlo-

rophyll index [TCI = (R750–800/R695–740) − 1] was computed 

using the method of Gitelson et al. (2003). A water band index 

[WBI = (R900/R970)] was based on Peñuelas et al. (1993). In 

addition, the refl ectance fi rst derivative was integrated over the 

wave band 900 to 970 nm (WBd1Int).

Average refl ectance across a specifi c wave band was used in 

these calculations.

Sensitivity of water band indices to changes in TCI as a 

function of available soil water was examined. Soil water was 

measured by neutron attenuation (Campbell Pacifi c Nuclear, 

Hydroprobe Model 503 DR). Weekly to biweekly soil water 

measurements were made in 0.3-m increments to 2.4-m 

depth. All data were taken near the center of each plot. Th ese 

data were utilized to examine treatment diff erences in soil 

water conditions both spatially (e.g., vertical diff erences) and 

temporally (e.g., diff erences caused by timing of irrigation in 

relation to evaporative conditions as aff ected by residue and 

crop growth stage). Available soil water was expressed on a 

volumetric basis.

Th e 2007 hyperspectra were also analyzed to fi nd optimal 

wavelength pairs that maximized the correlation between 

a vegetation index (VI) and LAI. Adapting the methods of 

Mutanga and Skidmore (2004), we calculated vegetation 

indices for all possible wavelength pairs (186,355) between the 

limits 390 to 1000 nm for 143 hyperspectra collected from 

plots representing diverse environments throughout the 2007 

growing season. Corresponding LAI was measured in each 

plot. Correlation coeffi  cients for all of the 143 VI–LAI data-

sets were computed and used to sort the wavelength pairs (λ1, 

λ2) from high to low in search of those pairs that best linear-

ized the VI–LAI relationship. Vegetation index was based on 

the general equations for either NDVI [(λ2 – λ1)/( λ2 + λ1)] or 

SR [λ2/ λ1].

RESULTS AND DISCUSSION
YieldTracker Performance

Th e analysis of variance for observed minus YieldTracker 

simulated yields, plus the model goodness of fi t for seasonal 

development of LAI, indicated a signifi cant year × treatment 

interaction. Th erefore, only the year × treatment means are dis-

cussed here (Table 1). Yields from the rainfed treatment were 

consistently overpredicted, whereas the yields from the irri-

gated treatments were consistently underpredicted across years. 

Yields from the rainfed treatment were signifi cantly lower than 

Table 1. All-pairwise year × treatment mean comparisons of 
YieldTracker yield simulations and LAI goodness-of-fi t. Means 
followed by a unique letter are signifi cantly different.

Specifi c interaction
Yield

Observed 
– simulated Goodness-of-fi tYear Treatment

kg ha–1 %
2002 rainfed 4,258f –6,185e 85.5d
2002 limited irrigation 13,932cd 587c 88.3bcd
2002 full irrigation 16,556b 2,582a 87.9cd
2003 rainfed 2,076g –9,719f 93.4a
2003 limited irrigation 13,152d 821bc 93.1a
2003 full irrigation 14,783c 2,680a 93.9a
2004 rainfed 11,341e –2,802d 87.0cd
2004 limited irrigation 17,681a 2,630a 92.0ab
2004 full irrigation 17,150ab 1,918ab 90.8abc
Standard error 447 527 1.8
Critical value 939 1,108 3.9
t-value for α = 0.05; df = 18 2.101 Error term: 

block × year× 
treatment
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the irrigated treatments in all 3 yr. In addition, yields within 

the rainfed treatment were diff erent in all 3 yr. Precipitation in 

2002 and 2003 was 88 and 76% of the long-term mean, respec-

tively. Th is was refl ected in yields, which were signifi cantly 

higher in the full irrigation treatment than in the limited 

irrigation treatment. In 2004, precipitation matched the long-

term mean and full irrigation had no yield advantage compared 

with limited irrigation. Accurate in-season prediction of yields 

could possibly eliminate late season irrigations in situations 

similar to 2004, thereby saving water and reducing input costs.

Th e relatively high values (Table 1) for the LAI goodness-of-

fi t (85–94%) suggest that the signifi cant diff erences between 

observed and simulated yields were not linked to canopy 

development simulations. An example of the seasonal course of 

observed and simulated green LAI is presented in Fig. 1 for all 

four replications of the rainfed treatment in 2002, which had 

the lowest average goodness-of-fi t (85%, Table 1) among treat-

ments and years. Th e model was able to track LAI reasonably 

well. However, discrepancies among observed vs. simulated 

yields were signifi cant. Th is likely resulted from incorrect 

parameterization or insuffi  cient mechanistic complexity in 

model algorithms that convert solar radiation to biomass 

or allocate biomass to grain rather than those that simulate 

canopy development.

Sensitivity analyses revealed the eff ect of selected parameter 

values on simulated grain yield. We conducted these analyses 

by changing a model parameter iteratively within an interval 

bracketing the default setting, while holding other parameters 

constant. Two extreme runs (Fig. 2) showed that the primary 

infl uence of specifi c leaf area (SLA = ratio of unit leaf area to 

unit leaf mass) was at very low values. In the limited irrigation 

treatment, where YieldTracker performed best, SLA could be 

increased (less costly leaves) to raise simulated grain yield to the 

observed. However, in the rainfed treatment, SLA would have 

to be reduced to unrealistic levels (very costly leaves) to force 

simulated yield to match observed yield. Similarly, the default 

yield partitioning factor (YPF) value (0.75) produced a near 

perfect match for limited irrigation. However, a value of about 

0.1 was required to make simulated mimic observed yield in 

the rainfed treatment.

Overall, simulated yields under limited and full irriga-

tion were slightly underpredicted, while simulated yields for 

the rainfed condition were generally severely overpredicted 

(Fig. 3). Th e individual data points, plus the standard deviation 

error bars, show that scatter or variability within treatments, 

especially rainfed, was attenuated by the model compared with 

observed yields.

Th e appeal of YieldTracker is its unique numerical solution 

requiring the user to input, in addition to temperature and 

radiation data, only one or more green LAI observations. Such 

LAI values can be obtained by methods of destructive sampling 

or remote sensing. Eff ects of water stress must be accounted for 

Fig. 1. YieldTracker projections of canopy development (leaf area index, LAI) for the rainfed 
treatment in 2002. Four replications are shown.
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by changes in LAI. Earl and Davis 

(2003) have published conclu-

sive evidence that drought stress 

reduces yield of maize and other 

grain crops by reducing radiation-

use effi  ciency (RUE), harvest index 

(HI), and canopy absorption of 

incident light in that order of 

impact. To make this model maxi-

mally useful for water management 

decisions in western Kansas, the 

algorithm needs to account for 

these eff ects.

Because of the utility of Yield-

Tracker—related to its simplicity 

and minimal driving variable 

data requirement—the possibil-

ity of modifi cation to improve its 

performance seems worthwhile. 

Remote sensing off ers potential for 

straightforward, wide-area quan-

tifi cation of the seasonal course of 

crop canopy development. Yield-

Tracker projects the course of green 

LAI quite well. Yet the traditional 

use of NDVI as a surrogate for LAI 

suff ers in crops like maize, where 

LAI values typically exceed 3 and 

are oft en as high as 6 or more. Th e 

NDVI saturates asymptotically as 

LAI increases above 3. In addition 

to the need for improved tracking 

of high LAI, some indicator of 

canopy functionality or effi  ciency 

is required to modify the simulated 

biomass production and allocation to grain as plant water sta-

tus responds to decreasing available soil water. Earl and Davis 

(2003) demonstrated the eff ects of water defi cits on RUE, HI, 

and light absorption under fi eld conditions. Detecting water 

defi cit conditions and quantifying eff ects on canopy function 

could improve YieldTracker performance under water-limiting 

conditions.

Hyperspectral Refl ectance Analyses

To address the issue of remote sensing of canopy develop-

ment, we used hyperspectral refl ectance signatures from maize 

growing in a wide range of available soil water conditions and 

found vegetation indices that were more sensitive to changes in 

LAI and plant water status. Th e NDVI showed the expected 

curvilinear response to increasing LAI, while TCI—consistent 

with the fi ndings of Gitelson et al. (2003)—was nearly linear 

up to LAI = 6, and the WBI response was intermediate 

between these two indices (Fig. 4, Table 2). Th e R2 values for 

the linear and exponential models of TCI were almost equal, 

indicating the utility of this index for high LAI crops like 

maize as reported by Gitelson et al. (2003).

Available soil water (ASW) ranged from 44 to 466 mm in 

a 2.4 m profi le. An ASW index (ASWI = 1–5) was created 

where 1 = 44 to 100, 2 = 100 to 200, 3 = 200 to 300, 4 = 300 

Fig. 3. YieldTracker simulated mean yields across years, 
treatments, and replications vs. observed mean yields. Error 
bars are means ± standard deviation.

Fig. 2. Sensitivity of YieldTracker yield predictions to specific leaf area (SLA) and yield 
partitioning factor (YPF) for the limited irrigation treatment in 2002 (top) and the rainfed 
treatment in 2003 (bottom).
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to 400, and 5 = 400 to 466. Th e sensitivity of water band indi-

ces to changes in TCI was determined using data associated 

with each ASWI.

Water band indices, WBI and WBd1Int, responded in a 

near-linear manner to increasing TCI (Fig. 5) as expected since 

both indices are spectrally derived and correlated with LAI. 

Within an ASWI, the sensitivity of the WB indices to increas-

ing TCI decreased as ASW increased. Similar results have 

been reported by Gamon et al. (1999). Th is suggests that these 

indices have potential to modulate radiation capture and con-

version effi  ciency as well as dry matter partitioning algorithms 

in YieldTracker. It is possible that useful information for water 

defi cit conditions will come from water balance algorithms 

that utilize crop coeffi  cients derived from remote sensing of 

surface temperatures and potential evaporation to calculate 

crop water use (Bastiaanssen et al., 1998).

Similar to the results of Mutanga and Skidmore (2004), the 

VI–LAI relationships, based on all possible wavelength pairs, 

were most linear in the red edge spectral region (e.g., 720–760 

nm). Th is is not surprising because the sensitivity of refl ectance 

in the red edge band to changes in wavelength is higher than 

for any other green leaf spectral feature in the visible and NIR 

(Elvidge and Chen, 1995). Red edge refl ectance is particularly 

responsive to changes in canopy biomass (LAI) and leaf chlo-

rophyll content as a result of contrasting high adsorption by 

chlorophyll in the red and corresponding high refl ectivity aris-

ing from cell wall scattering in the NIR (reviewed by Mutanga 

and Skidmore, 2004). As a result, optimal wavelength pairs for 

the top 10 and top 50 correlation coeffi  cients were separated 

by only a few nm and confi ned to the bands of 748 to 755 and 

744 to 756 nm, respectively. Mutanga and Skidmore (2004) 

reported the wavelength pairs for the 10 highest NDVI–bio-

mass correlation coeffi  cients ranged from 716 to 762 nm and 

the highest r-value (0.886) occurred at wavelengths of 746 and 

755 nm.

An example hyperspectral refl ectance scan at full crop 

canopy development is reproduced at two scales in Fig. 6. Th e 

fi rst derivative (d1R) of refl ectance is also plotted. Th e optimal 

wavelength pairs occurred within the longer wavelength region 

of the red edge transition including wavelengths greater than 

the point of maximum slope as shown by d1R. Among all 143 

scans, there was an occasional local d1R minimum (22 out of 

143) within the 744 to 756 nm band. A local d1R maximum 

was generally observed at or just beyond the 756 nm limit, but 

within this band, the maximum d1R always corresponded to 

the 744 nm limit.

Still in search of a linear prediction equation, we computed 

NDVI and SR for three diff erent wavelength pairs. Th e fi rst set 

(λ1 = 748, λ2 = 755 nm) represents the waveband limits that 

gave the 10 highest VI–LAI correlation coeffi  cients, where λ1 

and λ2 ranged between 390 and 1000 nm at 1-nm intervals. Th e 

second set (λ1 = 700, λ2 = 774 nm) represents the wavelength 

pair that gave the highest VI–LAI correlation coeffi  cient when 

λ1 was constrained to 600 to 700 nm and λ2 was constrained to 

700 to 900 nm. Finally, the third set (λ1 = 660, λ2 = 825 nm) 

represents the midpoints of the Landsat TM and ETM+ red 

and NIR bands, respectively. Results for NDVI–LAI are plotted 

in Fig. 7. Results for SR–LAI are plotted in Fig. 8. Using the 

narrow band of wavelengths (Fig. 7, left ), even the NDVI–LAI 

relationship approached linearity (R2 = 0.90), but constraining 

the choice of wavelength pairs (Fig. 7, center), or using Land-

sat wavelengths (Fig. 7, right), did not provide an usable VI. 

However, the superiority of the SR equation, compared with the 

NDVI equation, is shown in the companion SR–LAI plots (Fig. 

8). Although the narrowest band (Fig. 8, left ) was still superior to 

Fig. 4. Sensitivity of normalized difference vegetation index (NDVI), total chlorophyll index 
(TCI), and water band index (WBI) to leaf area index (LAI).

Table 2. Linear and exponential regression models for vegeta-
tion index (y) vs. leaf area index (x), where vegetation index 
is normalized difference vegetation index (NDVI), total chlo-
rophyll index (TCI), or water band index (WBI). Both linear 
(y = a + bx) and exponential [y = a + (b – a) × exp(–cx)] models 
were fi t.

Model Parameter NDVI TCI WBI
Linear R2 0.736 0.866 0.831

a 0.440 0.318 0.941
b 0.107 0.463 0.043

Exponential R2 0.854 0.877 0.877
a 0.910 4.634 1.190
b 0.272 0.172 0.909
c 0.633 0.149 0.330

Index Equation

 NDVI (R750–900 – R630–690)/(R750–900 + R630–690)

 TCI (R750–900/R695–740) – 1

 WBI R900/R970
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the other two combinations tested, the SR equation more nearly 

linearized the relationship compared to NDVI. Serrano et al. 

(2000) also reported a curvilinear relationship for NDVI–LAI 

in wheat with LAI values as high as 8, but a linear relationship 

for SR–LAI. Th eir selected wavelengths for both NDVI and SR 

were in the red (680 nm) and NIR (900 nm).

Using the linear equation for SR–LAI (Fig. 8, left ), we 

computed predicted LAI and compared it to measured LAI for 

Fig. 7. Normalized difference vegetation index (NDVI) response to increasing leaf area index 
(LAI) calculated using the wavelength pairs shown. The unconstrained (left) wavelength pair 
represents the extremes that gave the 10 highest (out of 186,355) NDVI–LAI correlation 
coefficients, where λ1 and λ2 ranged between 390 and 1000 nm at 1-nm intervals. The 
constrained (center) wavelength pair, where λ1 was allowed to vary between 600 and 700 
nm and λ2 between 700 and 900 nm, gave the highest NDVI–LAI correlation coefficient. The 
Landsat (right) wavelength pair represents the midpoints of the red and NIR bands used by 
the Thematic Mapper and Enhanced Thematic Mapper+ sensors. The coefficients (a, b, R2) 
are for the equation y = a + bx.

Fig. 8. Simple ratio (SR) response to increasing leaf area index (LAI) calculated using the 
wavelength pairs shown. The unconstrained (left) wavelength pair represents the extremes 
that gave the 10 highest (out of 186,355) SR–LAI correlation coefficients, where λ1 and λ2 
ranged between 390 and 1000 nm at 1-nm intervals. The constrained (center) wavelength pair, 
where λ1 was allowed to vary between 600 and 700 nm and λ2 between 700 and 900 nm, gave 
the highest SR–LAI correlation coefficient. The Landsat (right) wavelength pair represents the 
midpoints of the red and NIR bands used by the Thematic Mapper and Enhanced Thematic 
Mapper+ sensors. The coefficients (a, b, R2) are for the equation y = a + bx.
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a validation dataset that was diff erent from the calibration 

dataset used in Fig. 8. Simple ratio (λ2/ λ1 where λ1 = 748 nm 

and λ2 = 755 nm) was based on refl ectance at the extremes of 

the spectral band that gave the 10 highest SR–LAI correla-

tion coeffi  cients with the calibration dataset. Th e calibration 

dataset represented maize grown under near optimal soil 

water conditions season long with a maximum LAI value 

> 6. Th e validation dataset represented 120 hyperspectra 

from maize grown under rainfed or early season water defi cit 

conditions (described in Field Procedures: 2007) as refl ected in 

maximum LAI values <4.5. Th e root mean square (RSME) for 

the predicted–measured relationship (Fig. 9) was less than 0.5 

LAI units, indicating the utility of the red edge spectral region 

for linearizing vegetation index surrogates for LAI and canopy 

development.

Thus, our results demonstrate that hyperspectral sensors 

can provide remotely sensed information that is adequate 

for simulating crop canopy development by YieldTracker—

even in crops like maize, where LAI may exceed 6—pro-

vided appropriate vegetation indices and wavelengths are 

selected. Landsat TM and ETM+ sensors cannot provide 

the needed resolution, but scanners such as the Compact 

Airborne Spectrographic Imager (CASI) from ITRES 

Research Limited in Canada that can detect 288 wavelength 

bands between 400 and 1000 nm, may provide the needed 

resolution for wide area coverage.

What is lacking in YieldTracker is sufficient mechanistic 

complexity to account for water stress effects on photosyn-

thesis and C partitioning. Sinclair (1991) reported a simple 

analytical model of radiation capture and use-efficiency 

for a crop canopy. The model requires leaf area index, daily 

weighted mean radiation angle, shadow projection coef-

ficient, radiation intensity, leaf quantum efficiency, and 

biomass conversion efficiency. Radiation capture by sun and 

shade fractions of the canopy drives simulation of total C 

assimilation, using a nonrectangular hyperbola to quantify 

light-limiting effects on photosynthesis. Biomass accumula-

tion assumes constant conversion efficiency, considering 

respiration effects. This simplified model utilizes a mecha-

nistic conception of radiation capture and biomass accumu-

lation to calculate use-efficiency. As such, it is suitable to 

quantify effects of incomplete canopy and variable radiation 

levels on biomass accumulation under water and nutrient 

sufficiency.

Fig. 9. Predicted leaf area index (LAI)—based on simple ratio (SR = λ2/ λ1), where λ1 = 748 
nm and λ2 = 755 nm—vs. measured LAI. These wavelengths are the extremes of a band that 
gave the 10 highest (out of 186,355) SR–LAI correlation coefficients, where λ1 and λ2 ranged 
between 390 and 1000 nm at 1-nm intervals. Predicted LAI was calculated by inverting the 
unconstrained linear equation from Fig. 8 (left) as shown in header above. Measured LAI is 
a validation dataset completely separate from the dataset used to calibrate the prediction 
equation.
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Like YieldTracker, this Sinclair (1991) model does not con-

sider water defi cit eff ects. However, its incorporation of addi-

tional physiological detail may make it a better starting point 

for adding water stress eff ects—to achieve the objective of an 

in-season irrigation management tool—without greatly increas-

ing the data input requirement compared to YieldTracker.

CONCLUSIONS
YieldTracker off ers a straightforward way to predict grain 

yields of graminoid crops to guide water application decisions 

with minimal input of crop and weather data under irrigated 

conditions. Crop inputs are limited to one or more estimates 

of LAI to calibrate the seasonal course of canopy development. 

Remote sensing off ers an aff ordable way to project LAI on a 

wide-area basis, but requires a vegetation index that is sensitive 

to LAI values as high as 6. Total chlorophyll index, or SR in a 

narrow band within the red edge spectral region, both appear 

to satisfy this requirement. A water band index may allow 

modulation of biomass production and allocation algorithms 

to prevent overprediction of productivity during periods of 

water stress. Nevertheless, it may be more fruitful to account 

for water defi cit eff ects using a water balance approach.
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